วันเสาร์ที่ 3 กุมภาพันธ์ พ.ศ. 2561

เทคโนโลยีอวกาศ


บทที่ 8 เทคโนโลยีอวกาศ เทคโนโลยีอวกาศ
8.1กล้องโทรทรรศน์
กล้องโทรทรรศน์ แบบหักเหแสง
กล้องโทรทรรศน์ แบบสะท้อนแสง
กล้องฯแบบ Schmidt-Cassegrain
8.2 การขนส่งและการโคจรของดาวเทียม
ขอบเขตความเร็วเริ่มต้นของดาวเทียม
การโคจรของดาวเทียม
กล้องโทรทรรศน์อวกาศ ฮับเบิล
ฐานส่งจรวดทั่วโลกจะต้องคำนึงถึงความปลอดภัยต่ออุบัติเหตุที่อาจเกิดขึ้นได้นับตั้งแต่ก่อนการจุดของจรวด ไปจนกระทั่งจรวดพาดาวเทียมเข้าสู่วงโคจร โดยเฉพาะอย่างยิ่งในช่วงที่จรวดท่อนแรกใช้งานจนเชื้อเพลิงหมดแล้วต้องสลัดจรวดท่อนนี้ลงมา นอกจากนี้จะต้องพิจารณาวงโคจรที่ต้องการส่งดาวเทียมด้วย เพราะถ้าวงโคจรไม่เหมาะสมกับตำแหน่งของฐานส่งจรวดก็จะทำใก้เกิดความผิดพลาดในการส่งดาวเทียมเข้าสู่วงโคจรที่ต้องการได้เนื่องจากเชื้อเพลิงไม่พอเพียง ในปัจจุบันนี้ทั่วโลกมีฐานส่งจรวดอยู่ 22 แห่ง
8.3 ระบบการขนส่งอวกาศ
8.4 การใช้ประโยชน์จากเทคโนโลยีอวกาศ 
ภาพเซลล์เชื้อเพลิง
ภาพเซลล์สุริยะ
ภาพถ่ายเมฆจากดาวเทียม GMS-5 (ถ่ายเมื่อ 3 ก.พ. 2546)
ดาวเทียมสำรวจทรัพยากรโลก
ภาพถ่ายดาวเทียมบริเวณโรงกรองน้ำ และผลิตน้ำประชาชื่น   และนอร์ธปาร์ค จากดาวเทียม IRS-ID ถ่ายเมื่อ 24 ก.พ. 2544 หลอมกับภาพจาก Landsat-7 ETM + ถ่ายเมื่อ 24 ม.ค. 2545

 แม้ว่าตาของคนเรา สามารถมองเห็นท้องฟ้า แต่การใช้อุปกรณ์ประเภทกล้องสองตา หรือกล้องโทรทรรศน์ จะช่วยให้ตาเราสามารถรับแสงได้มากยิ่งขึ้น ทำให้มองเห็นวัตถุที่มีความสว่างน้อย หรือจางได้สว่าง หรือชัดเจนมากขึ้น กล้องโทรทรรศน์ (Telescopes) เป็นอุปกรณ์ช่วยดูดาวประเภทหนึ่ง ที่ช่วยให้นักดูดาว สามารถศึกษาท้องฟ้า ได้มากกว่ากล้องสองตา

คุณลักษณะของกล้องโทรทรรศน์

1. ขนาดของหน้ากล้อง (Aperture): ตัวแปรที่สำคัญที่สุด ของกล้องโทรทรรศน์ คือ ขนาดของเส้นผ่านศูนย์กลาง ของกล้อง ซึ่งหมายถึงขนาดของเลนส์วัตถุ (ในกล้องโทรทรรศน์ แบบหักเหแสง) หรือขนาดของกระจกสะท้อนแสง (ในกล้องโทรทรรศน์ แบบสะท้อนแสง) ทั้งนี้ก็เพราะว่า การที่วัตถุมองไม่ค่อยเห็น เกิดจากวัตถุนั้นๆจาง หรือได้รับแสงจากวัตถุนั้นน้อย ไม่ได้เกิดจากวัตถุเล็ก แล้วต้องการกำลังขยายมาก ดังนั้น ขนาดของหน้ากล้องที่มาก จะทำให้กล้องได้รับแสงมากกว่า กล้องที่มีขนาดหน้ากล้องน้อย แต่อย่าลืมว่า กล้องที่มีขนาดใหญ่มาก น้ำหนักและการเคลื่อนย้าย ก็อาจเป็นอุปสรรคต่อการใช้งานได้

 2. กำลังขยาย (Power or Magnification): กำลังขยาย ไม่ใช่ ตัวแปรหรือปัจจัยที่สำคัญมากนัก ปกติแล้ว กำลังขยายสูงสุด จะไม่เกิน 50 เท่าของ(ขนาดเส้นผ่านศูนย์กลางของ)กล้อง ในหน่วยนิ้ว (หรือกำลังขยายสูงสุด จะไม่เกิน 2 เท่าของกล้อง ในหน่วยมิลลิเมตร) เช่น กล้องขนาด 6 นิ้ว (6-inch) ควรจะมีกำลังขยายสูงสุดไม่เกิน 300x (300 เท่า) เป็นต้น


ประเภทของกล้องโทรทรรศน์ กล้องโทรทรรศน์ แบ่งออกได้ 3 ประเภท คือ

1. กล้องโทรทรรศน์ แบบหักเหแสง (Refractor Telescope) เป็นกล้องโทรทรรศน์ ที่อาศัยหลักการหักเหของแสง ผ่านเลนส์วัตถุ (Objective Lens) แล้วหักเหอีกครั้ง ผ่านเลนส์ตา (Eye piece) กล้องชนิดนี้ ค้นพบก่อนที่กาลิเลโอจะนำมาพัฒนา และนิยมใช้จนแพร่หลาย ในสมัยของกาลิเลโอ ซึ่งเหมาะสำหรับ สำรวจพื้นผิวของดวงจันทร์, ดาวเคราะห์, วงแหวนและดาวบริวารของดาวเคราะห์ เป็นต้น







ข้อดี ของกล้องโทรทรรศน์แบบหักเหแสงนี้ เหมาะสำหรับมือใหม่ เนื่องจาก ราคาถูก (เมื่อเทียบกับแบบอื่น), เคลื่อนย้าย, ประกอบใช้งานง่าย, และเนื่องจากไม่ต้องตั้งอะไรมากนัก ทำให้บำรุงรักษาง่าย นอกจากนี้ โครงสร้างของกล้อง ก็ป้องกันฝุ่นในตัวอยู่แล้ว

ข้อเสียคือ ขนาดสูงสุดของเลนส์วัตถุไม่มากนัก ซึ่งทั่วไปจะมีขนาดประมาณ 3-5 นิ้ว ดังนั้น จึงไม่สามารถสังเกตวัตถุที่จางมากๆ นอกจากนี้ ขนาดของเลนส์วัตถุที่ใใหญ่มาก จะทำให้ภาพที่ได้มีสีเพี้ยน เนื่องจากการหักเหของแต่ละสี ในสเปคตรัมของแสงไม่เท่ากัน ทำให้ต้องมีการเคลือบเลนส์ (Coating) เพื่อแก้ไข ทำให้ราคาสูงขึ้นอีก และกล้องโทรทรรศน์ชนิดนี้ มักมากับกระจกสะท้อน (The Right-angle Mirror or Diagonal Mirror) เพื่อช่วยให้สะดวกในการดูดาว ทำให้ภาพที่ได้ กลับจากซ้ายไปชวา ทำให้มือใหม่ ยากต่อการเปรียบเทียบกับแผนที่ฟ้าได้













2. กล้องโทรทรรศน์ แบบสะท้อนแสง (Refrector Telescope) เป็นกล้องโทรทรรศน์ ที่อาศัยหลักการสะท้อนของแสง ผ่านกระจกโค้ง (Concave Objective Mirror) แล้วหักเหอีกครั้ง ผ่านเลนส์ตา (Eye piece) กล้องชนิดนี้ พัฒนาโดยไอแซ็ค นิวตัน จึงมีอีกชื่อหนึ่ง คือ กล้องโทรทรรศน์แบบนิวตัน (Newtonian Telescope) ซึ่งเหมาะสำหรับ การสำรวจกระจุกดาว, เนบิวลา, วัตถุท้องฟ้า หรือกาแล็กซี่ที่ค่อนข้างจาง เป็นต้น





 กระจกโค้ง จะสะท้อนแสง ให้แสงรวมกันยังจุดโฟกัส จุดเดียว เพื่อทำให้ภาพที่ได้มีความคมชัด ดังนั้น กระจกสะท้อน จึงต้องมีความโค้งแบบพาราโบลา (Parabola) ไม่ใช่โค้งแบบส่วนหนึ่งของทรงกลม (Sphere) (ดูภาพข้างล่างประกอบ)





ตัวเลข f/ratio (Focal Ratio) 
กล้องแบบนี้ จะมีตัวเลข f/ratio เช่น f/5, f/6, f/16 เป็นต้น ซึ่งตัวเลขหลัง f/ เป็นตัวเลขบอก อัตราส่วนระหว่าง ระยะโฟกัส (ระยะจากกระจกโค้ง ถึงจุดรวมแสง หรือเลนส์ตา) ต่อขนาดของกล้อง

เช่น กล้องขนาดเส้นผ่านศูนย์กลาง 4 นิ้ว มีระยะโฟกัสเท่ากับ 40 นิ้ว จะมีค่า f/ratio เท่ากับ f/10 เป็นต้น

ตัวเลขที่น้อย เช่น f/5, f/6 กล้องจะมีความยาวน้อยกว่า แต่คุณภาพจะดีสู้กล้องที่มีตัวเลขมากกว่า เช่น f/10 ไม่ได้ แต่กล้องที่มีตัวเลขมากกว่า จะมีความยาวกล้องมากกว่า ทำให้เคลื่อนย้ายลำบากกว่า

และกล้องโทรทรรศน์แบบ Catadioptric ก็อาศัยหลักคำนวณแบบเดียวกัน เพียงแต่ระยะโฟกัส เป็นระยะที่เกิดจากการสะท้อน และหักเหผ่านเลนส์ตาแล้ว เท่านั้น



ข้อดี ของกล้องโทรทรรศน์แบบสะท้อนแสงนี้ เหมาะสำหรับทั่วไป เนื่องจาก ภาพที่ได้มีคุณภาพดี, ราคาไม่สูงมาก นอกจากนี้ ภาพที่ได้ก็เหมือนจริง (ไม่กลับข้าง) นอกจากนี้ ขนาดของหน้ากล้อง ซึ่งมีความสำคัญต่อการรับแสง กล้องชนิดนี้ ก็มีขนาดให้เลือกมากกว่า 

ข้อเสียคือ กระจกสะท้อนที่สอง (Secondary Mirror or Reflecting Mirror) ที่อยู่ภายในกล้อง ที่ทำหน้าที่สะท้อนภาพมายังเลนส์ตานั้น จะลดพื้นที่รับแสงของกล้องแบบนี้ ทำให้เมื่อขนาดของหน้ากล้องเท่ากัน กล้องแบบหักเหแสงจะรับแสงได้มากกว่า ทำให้เห็นภาพวัตถุที่จางกว่าได้ (แต่กล้องโทรทรรศน์แบบสะท้อนแสง มีขนาดของหน้ากล้องที่ใหญ่กว่าให้เลือกแทน) และกล้องแบบนี้ ก็ต้องการการดูแลรักษา โดยเฉพาะการป้องกันฝุ่น หรือน้ำค้าง เนื่องจากด้านหน้าของกล้อง เปิดออกรับแสงโดยตรง โดยไม่มีอะไรมาปิดไว้






3. กล้องโทรทรรศน์ แบบ Catadioptric (Catadioptric Telescope) เป็นกล้องโทรทรรศน์ ที่อาศัยทั้งหลักการสะท้อนและการหักเหของแสง เข้าไว้ด้วยกัน ซึ่งกล้องชนิดนี้ ใช้ทั้งกระจกโค้งสะท้อน และเลนส์ในการหักหของแสง และเรียกกล้องชนิดนี้ว่า “Catadioptric” หมายถึง กระจก-เลนส์ (mirror-lens) ตัวอย่างเช่น กล้องแบบ Schmidt-Cassegrain, Maksutov-Cassegrain เป็นต้น กล้องชนิดนี้ จำหน่ายครั้งแรกในยุค ค.ศ. 1970s (ประมาณ 20-30 ปีที่ผ่านมาเท่านั้น) กล้องชนิดนี้ เหมาะสำหรับ การสำรวจกระจุกดาว, เนบิวลา, วัตถุท้องฟ้า หรือกาแล็กซี่ที่ค่อนข้างจาง เป็นต้น



ข้อดี ของกล้องโทรทรรศน์แบบนี้ ทำให้มีขนาดเล็ก (ขณะที่หน้ากล้องใหญ่ขึ้น) ทำให้เคลื่อนย้ายสะดวก, ขนาดที่ของกล้องสั้น ทำให้ติดตั้งมอเตอร์ติดตามดาวได้ง่าย เนื่องจากน้ำหนักสมดุลกว่า และติดตั้งอุปกรณ์ประกอบได้ง่าย เช่น กล้อง CCD สำหรับถ่ายภาพ เป็นต้น

ข้อเสียคือ ราคาที่สูงกว่ากล้องแบบอื่นๆ (ในขนาดที่เท่ากัน) และภาพที่ได้ มีความคมสู้แบบสะท้อนแสงไม่ได้ (ในขนาดที่เท่ากัน) เนื่องจาก เลนส์ตาที่ทำหน้าที่หักเหแสง และกล้องโทรทรรศน์ชนิดนี้ มักมากับกระจกสะท้อน (The Right-angle Mirror or Diagonal Mirror) เพื่อช่วยให้สะดวกในการดูดาว ทำให้ภาพที่ได้ กลับจากซ้ายไปชวา เช่นเดียวกับกล้องโทรทรรศน์แบบหักเหแสง ทำให้ยากต่อการเปรียบเทียบ กับแผนที่ฟ้าได้








ปัจจุบันความก้าวหน้าด้านวิทยาศาสตร์เทคโนโลยีด้านการโคจรภายใต้แรงดึงดูดระหว่างมวล ถูกนำมาประยุกต์ใช้เพื่อช่วยพัฒนาองค์ความรู้ต่างๆ ทั้งทางด้านวิทยาศาสตร์ เศรษฐกิจ สังคม อุตุนิยมวิทยา ภูมิศาสตร์ หรือแม้แต่ช่วยอำนวยความสะดวกด้านการติดต่อสื่อสารอย่างทั่วถึงและรวดเร็ว ดังเช่นในยุคข้อมูลไร้พรมแดนอย่างทุกวันนี้ ตัวอย่างของวัตถุที่มีการโคจรภายใต้แรงดึงดูดระหว่างมวล เช่น ดาวเทียม กล้องโทรทรรศน์อวกาศ สถานีอวกาศ เป็นต้น พื้นฐานของการโคจรภายใต้แรงดึงดูดระหว่างมวลจำเป็นต้องอาศัยความรู้เกี่ยวกับเรขาคณิตของเส้นโค้งซึ่งเป็นรูปร่างของเส้นทางการเคลื่อนที่ โดยเฉพาะเรขาคณิตของวงรี ซึ่งได้กล่าวไว้คร่าวๆ แล้วในบทที่ 4 เส้นทางการเคลื่อนที่แบบวงรีสามารถอธิบายได้ด้วยกฎของ เคปเลอร์ 3 ข้อ ดังต่อไปนี้ คือ


1. ดาวเคราะห์ทั้งหมดจะมีเส้นทางการเคลื่อนที่เป็นวงรี โดยมีดวงอาทิตย์อยู่ที่ตำแหน่งจุดโฟกัสจุดหนึ่งของวงรี

2. ถ้าลากเส้นตรงเชื่อมระหว่างดาวเคราะห์กับดวงอาทิตย์แล้ว เส้นตรงดังกล่าวจะกวาดพื้นที่ได้ค่าเท่ากันเมื่อช่วงเวลาที่ใช้เท่ากัน

3. สำหรับวงโคจรแบบวงรีของวัตถุท้องฟ้าภายใต้แรงโน้มถ่วงระหว่างกัน คาบการโคจรกับระยะครึ่งแกนยาวจะมีความสัมพันธ์กันโดยที่ คาบการโคจรของวัตถุท้องฟ้า (หน่วยปี) ยกกำลังสอง จะมีค่าเท่ากับระยะครึ่งแกนยาว (ในหน่วย AU) ยกกำลังสาม

กฎของเคปเลอร์ในเบื้องต้นใช้อธิบายเส้นทางการเคลื่อนที่ของดาวเคราะห์รอบดวงอาทิตย์ ซึ่งเกิดจากแรงดึงดูดระหว่างมวลของดวงอาทิตย์กับดาวเคราะห์ แต่เนื่องจากแรงดังกล่าวเป็นแรงชนิดเดียวกับแรงดึงดูดระหว่างมวลของโลกกับดาวเทียม โลกกับสถานีอวกาศ ดวงอาทิตย์กับยานอวกาศ ฯลฯ จึงสามารถใช้กฎของเคปเลอร์ในการอธิบายเส้นทางการเคลื่อนที่ของวัตถุเหล่านี้ได้



- ดาวเทียม

ปัจจุบันดาวเทียมถูกมนุษย์ส่งไปโคจรรอบโลกจำนวนนับไม่ถ้วน ด้วยประโยชน์ต่างๆมากมาย สามารถแบ่งประเภทของดาวเทียมตามหน้าที่ต่างๆ ได้ดังนี้

(ก) ดาวเทียมสื่อสาร
(ข) ดาวเทียมอุตุนิยมวิทยา
(ค) ดาวเทียมสำรวจทรัพยากร
(ง) ดาวเทียมทางทหาร
(จ) ดาวเทียมสังเกตการณ์ทางดาราศาสตร์


ดาวเทียมถูกส่งขึ้นไปจากโลกโดยยานขนส่งอวกาศ และสามารถโคจรรอบโลกได้อาศัยหลักการโคจรตามแรงดึงดูดระหว่างมวล ซึ่ง ณ ระดับความสูงจากผิวโลกระดับหนึ่ง ดาวเทียมจะต้องมีความเร็วเพียงค่าหนึ่งเท่านั้นจึงสามารถจะโคจรรอบโลกอยู่ได้โดยไม่หลุดจากวงโคจร โดยความเร็วดังกล่าวจะอยู่ในช่วง 7.6-11.2 กิโลเมตรต่อวินาที (รูปแบบการโคจรแบบวงกลมจนกระทั่งถึงรูปแบบการโคจรแบบพาราโบลา) ดังรูปที่ 1 ความเร็วดังกล่าวนี้ถูกควบคุมตั้งแต่เริ่มต้นปล่อยดาวเทียมเข้าสู่วงโคจรเพื่อให้เส้นทางการโคจรของดาวเทียมไม่ซ้อนทับกันกับดาวเทียมดวงอื่นๆ ดังนั้นแม้จะมีดาวเทียมอยู่มากมายแต่ดาวเทียมเหล่านี้จะไม่โคจรชนกันเลย เนื่องจากดาวเทียมแต่ละดวงจะมีสมบัติการเคลื่อนที่เฉพาะตัว




นอกจากนั้นยังสามารถแบ่งประเภทของดาวเทียมตามความสูงในการโคจรเทียบกับพื้นโลกได้ดังนี้คือ



(1) สูงจากพื้นโลกประมาณ 41,157 กิโลเมตร เป็นดาวเทียมที่โคจรหยุดนิ่งกับที่เทียบกับพื้นโลก(Geostationary Satellites) จะลอยอยู่หยุดนิ่งค้างฟ้าเมื่อเทียบกับตำแหน่งใดตำแหน่งหนึ่งบนโลก โดยส่วนมากจะเป็นดาวเทียมประเภทดาวเทียมสื่อสาร ตัวอย่างเช่นดาวเทียมไทยคม ดาวเทียมเหล่านี้อยู่เหนือเส้นศูนย์สูตรโลกประมาณ จะวางตัวอยู่ในแนวเส้นศูนย์สูตรโลก และสูงจากพื้นโลกประมาณ 41,157 กิโลเมตร หรือประมาณ 1/10 เท่าของระยะทางจากโลกถึงดวงจันทร์ มีคาบการโคจรประมาณ 24 ชั่วโมง

 (2) สูงจากพื้นโลกประมาณ 9,700-19,400 กิโลเมตร เป็นดาวเทียมที่ไม่ได้หยุดนิ่งเทียบกับพื้นโลก(Asynchronous Satellite) ซึ่งโดยส่วนมากจะเป็นดาวเทียมนำทางแบบจีพีเอส (GPS: Global Positioning System) ซึ่งนำไปประยุกต์ใช้ในระบบการติดตาม บอกตำแหน่ง หรือนำร่องบนโลก ไม่ว่าจะเป็น เครื่องบิน เรือเดินสมุทร รถยนต์ ระบบดาวเทียมจีพีเอสจะประกอบด้วยดาวเทียม 24 ดวง ใน 6 วงโคจร ที่มีวงโคจรเอียงทำมุม 55 องศาในลักษณะสานกันคล้ายลูกตระกร้อ ดังรูปที่ 2 มีคาบการโคจรประมาณ 12 ชั่วโมง

(3) สูงจากพื้นโลกประมาณ 4,800-9,700 กิโลเมตร เป็นดาวเทียมที่ไม่ได้หยุดนิ่งเทียบกับพื้นโลก (Asynchronous Satellite) ซึ่งเป็นระดับที่ถูกแบ่งวงโคจรไว้สำหรับดาวเทียมสำหรับการสำรวจ และสังเกตการณ์ทางวิทยาศาสตร์ อาทิเช่น การวิจัยเกี่ยวกับพืช-สัตว์ การติดตามร่องรอยของสัตว์ป่า เป็นต้น ดาวเทียมที่ระดับดังกล่าวมีคาบการโคจรประมาณ 100 นาที

(4) สูงจากพื้นโลกประมาณ 130-1940 กิโลเมตร เป็นดาวเทียมที่ไม่ได้หยุดนิ่งเทียบกับพื้นโลก (Asynchronous Satellite) โดยส่วนมากจะเป็นดาวเทียมที่ใช้ในการสำรวจทรัพยากรบนโลกรวมไปถึงดาวเทียมด้านอุตุนิยมวิทยา

- กล้องโทรทรรศน์อวกาศ

ในการสังเกตการณ์วัตถุท้องฟ้าทางดาราศาสตร์ซึ่งอยู่ไกล นักดาราศาสตร์จำเป็นต้องใช้กล้องโทรทรรศน์ จึงมีกล้องโทรทรรศน์กระจายอยู่ทั่วทุกมุมโลก แต่เนื่องจากกว่าที่แสงจากวัตถุท้องฟ้าเหล่านั้นจะเข้ามาสู่กล้องโทรทรรศน์บนโลกได้ต้องผ่านชั้นบรรยากาศโลกซึ่งมีบางช่วงความยาวคลื่นที่ถูกดูดกลืนหรือกระเจิงออกไปทำให้ผลการสังเกตการณ์ต้องคิดถึงค่าการรบกวนจากชั้นบรรยากาศ จึงมีแนวความคิดในการส่งดาวเทียมซึ่งติดตั้งกล้องโทรทรรศน์สังเกตการณ์ในอวกาศ และในปี พ.ศ. 2533 องค์การนาซาได้ส่งกล้องโทรทรรศน์อวกาศฮับเบิล (Hubble Space Telescope) ขึ้นไปประจำในวงโคจรรอบโลกที่ความสูง 600 กิโลเมตรเหนือผิวโลก บรรยากาศที่ความสูงดังกล่าวนี้เบาบางเทียบได้กับสภาวะสุญญากาศ ในการสังเกตการณ์ทางดาราศาสตร์ที่ระดับความสูงดังกล่าวจึงไม่มีผลกระทบจากบรรยากาศ

กล้องโทรทรรศน์อวกาศฮับเบิลเป็นกล้องชนิดสะท้อนแสง มีขนาดความกว้างของกระจกปฐมภูมิ 2.4 เมตร โคจรรอบโลกทุกๆ 97 นาทีรวมน้ำหนักของตัวกล้องและอุปกรณ์ต่างๆ หนักถึง 11 ตัน มีขนาดความกว้าง 4.3 เมตร ยาว 13.3 เมตร ใช้พลังงานจากแผงเซลล์แสงอาทิตย์ที่ปีกทั้งสองข้าง กระแสไฟฟ้าที่ผลิตได้จะถูกเก็บไว้ในแบตเตอรี่นิเกิล-ไฮโดรเจนขนาดใหญ่ ตัวเพื่อใช้งานขณะที่กล้องโคจรไปอยู่ในเงาของโลกขณะไม่ได้รับแสง อุปกรณ์สำคัญที่ติดตั้งไปกับกล้องคือระบบคอมพิวเตอร์ กล้องถ่ายภาพมุมกว้าง เครื่องตรวจวัดสเปกตรัม เครื่องปรับทิศทางของกล้อง เป็นต้น ภาพถ่ายจากกล้องจะได้รับการวิเคราะห์โดยสถาบันวิทยาศาสตร์เพื่อใช้เป็นข้อมูลในทางดาราศาสตร์

กล้องบนโลกนั้นสามารถส่องวัตถุท้องฟ้าได้ไกลราว 2 พันล้านปีแสง แต่กล้องฮับเบิลสามารถส่องได้ไกลถึง 14,000 ล้านปีแสง ข้อมูลที่ได้จากกล้องฮับเบิลเพียงระยะเวลาสั้นๆ สามารถแสดงให้เห็นถึงรายละเอียดต่างๆ ของวัตถุท้องฟ้าที่มนุษย์ไม่เคยเห็นมาก่อน กล้องฮับเบิลมีอายุการใช้งานนานถึง 20 ปี โดยคาดว่านาซาจะปลดระวางในปี พ.ศ. 2553

นอกจากนั้นยังมีกล้องโทรทรรศน์อวกาศรังสีเอกซ์จันทรา (Chandra X-Ray Observatory) ซึ่งถูกส่งขึ้นสู่อวกาศเมื่อวันที่ 23 กรกฎาคม 2543 ปฏิบัติภารกิจบนวงโคจรสูงจากผิวโลก โดยระยะห่างจากผิวโลกมากที่สุด 133,000 กิโลเมตร

ในอนาคตองค์การนาซาวางแผนจะสร้างและส่งกล้องโทรทรรศน์อวกาศตัวใหม่เพื่อทดแทนกล้องฮับเบิล ชื่อว่ากล้องโทรทรรศน์อวกาศ เจมส์ เว็บบ์ (James Webb Space Telescope) คาดว่าจะส่งขึ้นไปประมาณปี 2554 โดยกล้องดังกล่าวมีขนาดกระจกปฐมภูมิใหญ่ 6.5 เมตร ซึ่งใหญ่กว่ากล้องฮับเบิลประมาณ2-3 เท่า

1. ทฤษฏีของจรวด

ในการดำเนินกิจกรรมทางด้านอวกาศจำเป็นต้องมีพาหนะที่จะนำพาสิ่งที่มนุษย์สร้างขึ้นเช่น ดาวเทียม หรือนำพามนุษย์เองเดินทางจากโลกขึ้นสู่ชั้นอวกาศ พาหนะที่ใช้จะมีหลักการแตกต่างจากการบินทั่วไป เพราะเมื่อเครื่องบินมีแรงฉุดไปข้างหน้า (Thrust) อากาศจะไหลผ่านด้านบนและล่างของปีก จากรูปร่างของปีกที่มีระยะผิวด้านบนสูงกว่าด้านล่างจะทำให้ความเร็วเหนือปีกสูงกว่าที่ใต้ปีก ความดันอากาศเหนือปีกจึงต่ำกว่าใต้ปีก ทำให้เกิดแรงแรงพยุงที่ปีก (Lift) เพื่อต้านแรงดึงดูดของโลก (Weight) ถ้าแรงพยุงปีกมากกว่าน้ำหนักของเครื่องบินก็จะทำให้เครื่องบินลอยอยู่ได้ ขณะที่เครื่องบินเคลื่อนที่ไปข้างหน้าจะมีแรงต้านการเคลื่อนที่ขณะแหวกผ่านอากาศ (Drag) ยิ่งใกล้พื้นโลกแรงนี้ก็จะยิ่งมากขึ้น แต่การดำเนินกิจกรรมอวกาศที่ต้องให้อวกาศยานเข้าสู่อวกาศซึ่งไม่มีอากาศ จึงไม่มีแรงพยุงจากปีก ดังนั้นการเคลื่อนที่ของอวกาศยานจะต้องอาศัยแรงขับโดยตรง ซึ่งแรงขับนี้เป็นไปตามกฏการเคลื่อนที่ของนิวตัน อวกาศยานที่เราใช้ในการเข้าสู่อวกาศคือจรวด

2. กฏการเคลื่อนที่สามข้อของนิวตัน

กฏการเคลื่อนที่ของนิวตันข้อที่ 1
วัตถุที่เคลื่อนที่อยู่อย่างสม่ำเสมอจะคงสภาวะการเคลื่อนที่นั้นต่อไป นอกจากจะมีแรงภายนอกมากระทำ

กฏการเคลื่อนที่ของนิวตันข้อที่ 2
ความสัมพันธ์ระหว่างมวลของวัตถุ (m) ความเร่ง (a) และแรงที่กระทำ
 (F) คือ F = ma

อัตราเร่งและแรงเป็นเวคเตอร์ ทิศทางของแรงและความเร่งมีทิศทางเดียวกัน กฏข้อนี้เป็นกฏที่สำคัญในการคำนวณปริมาณที่เป็นพลศาสตร์ เพื่อหาความเร็วที่เปลี่ยนแปลงไปเมื่อมีแรงมากระทำ

กฏการเคลื่อนที่ของนิวตันข้อที่ 3
ทุกแรงกระทำจะมีแรงปฏิกิริยาขนาดเดียวกันแต่ทิศทางตรงข้าม

3. การทำงานของจรวด

จรวดทำงานตามกฏข้อที่ 3 ของนิวตันไม่ใช่อย่างที่คนจำนวนมากยังเข้าใจว่าจรวดเคลื่อนที่เนื่องจากแรงขับของก๊าซที่ผลักกับพื้นช่วยยกตัวจรวดขึ้น หลังจากนั้นก๊าซผลักดับกับบรรยากาศให้จรวดลอยตัวสูงขึ้น เพราะถ้าเป็นเช่นนั้นจรวดจะไม่สามารถทำงานได้ในอวกาศ แต่ที่จริงแล้วจรวดทำงานได้ดีขึ้นในอวกาศที่ไม่มีแรงต้านของอากาศ

ที่จริงแล้วจรวดทำงานโดยให้ก๊าซจำนวนมหาศาลพ่นออกด้วยความเร็วสูงจากห้องเผาไหม้ของเครื่องยนต์จรวดผ่านหัวฉีดที่ออกแบบมาเป็นพิเศษ ความเร็วของก๊าซนี้สูงถึงราว 2.7 กิโลเมตรต่อวินาทีและการที่ก๊าซพ่นออกมานี้ทำให้เกิดการเปลี่ยนแปลงของโมเมนตัมของก๊าซขณะเกิดการเผาไหม้ เกิดเป็นแรงที่ทำให้ก๊าซถูกผลักออกมา แรงนี้คือแรงกระทำตามกฏข้อที่สามของนิวตันและกระทำให้เกิดแรงปฏิกิริยาขนาดเดียวกันในทิศทางตรงข้ามเรียกว่า Thrust ที่เร่งความเร็วจรวด

4. ฐานส่งจรวด



5. การคำนวณค่าจ้างจรวดส่งดาวเทียม

ค่าจ้างส่งดาวเทียมมีมูลค่าที่สูงมากและเป็นตัวหนึ่งที่ทำให้การดำเนินกิจการอวกาศไม่สามารถพัฒนาไปได้เร็วเท่าที่ควร อย่างไรก็ตามวิธีคิดค่าส่งดาวเทียมเป็นเรื่องที่ซับซ้อนและรายละเอียดมาก ในปัจจุบันนี้ตัววัดของการคิดค่าส่งดาวเทียมต่อน้ำหนักกำลังได้รับความนิยมเพิ่มมากขึ้น แต่ก็เป็นตัววัดที่ไม่ได้คำนึงถึงความเสี่ยง และจรวดแต่ละแบบก็มีความแตกต่างของขนาดและน้ำหนักบรรทุกด้วย จึงเป็นการยากที่จะเปรียบเทียบด้วยวิธีดังกล่าว แต่วิธีนี้ก็ยังมีประโยชน์สำหรับการเปรียบเทียบในช่วงการออกแบบ (Design phase) แม้ว่าการคิดค่าใช้จ่ายต่อหน่วยน้ำหนักจะตรงไปตรงมาแต่ก็ทำได้หลายวิธี วิธีหนึ่งคือเอาต้นทุนของจรวดหารด้วยน้ำหนักบรรทุก ค่าใช้จ่ายในรูปแบ่งตามขนาดของจรวดเป็น 3 กลุ่ม ซึ่งเป็นค่าใช้จ่ายในช่วงปี ค.ศ.1990 ราคานี้ไม่รวมค่าใช้จ่ายของจรวดขับดันปรับตำแหน่ง

6. การเตรียมก่อนส่งดาวเทียม 

หลังจากที่ดาวเทียมถูกสร้างเสร็จแล้วจะต้องทดสอบการทำงานตามวัตถุประสงค์ของดาวเทียม และจะต้องทดสอบดาวเทียมในสภาวะที่เกิดขึ้น นับตั้งแต่ออกจากห้องปฏิบัติการ การขนส่ง เก็บรักษา ติดตั้งในจรวด จนกระทั่งดาวเทียมถูกปล่อยออกจากจรวด


7.องค์กรที่เกี่ยวข้อง

กิจกรรมด้านอวกาศเป็นกิจกรรมที่เกี่ยวข้องกับหลายประเทศ สำนักงานเลขาธิการของ Committee on the Peaceful Uses of Outer Space (COPUOS) คือ The United Nations Office for Outer Space Affairs (UNOOSA) เป็นหน่วยงานหลักที่พัฒนากฏหมายและบทบาทการใช้อวกาศ มีสนธิสัญญา (Treaty)

การส่งดาวเทียมนอกจากต้องปฏิบัติตามกฏหมายอวกาศแล้ว ยังต้องปฏิบัติตามข้อตกลงระหว่างประเทศในเรื่องการใช้ความถี่ และถ้าเป็นดาวเทียมค้างฟ้าจะต้องมีการขออนุญาตตำแหน่งในวงโคจรเพื่อไม่ให้เกิดการรบกวนกันจากสหภาพโทรคมนาคมระหว่างประเทศ (International Telecommunication Union, ITU)


8. การจองตำแหน่งและความถี่ 

ITU ใช้กลไกของการกำหนดความถี่เพื่อควบคุมการใช้ตำแหน่งในวงโคจรค้างฟ้า โดยกระบวนการของ การจัดสรรตำแหน่งจะใช้แนวคิด “first come, first served” กระบวนการนี้จะต้องดำเนินการประสานงานก่อนใช้งานโดยมีหลักพื้นฐานว่าสิทธิในการใช้ตำแหน่งดาวเทียมจะได้สิทธิมาด้วยการเจรจากับผู้ที่ใช้สิทธิในวงโคจรนั้น ถ้าถูกต้องเรียบร้อยแล้วก็จะเป็นขั้นตอนขององค์กรระดับชาติในการกำหนดความความถี่และตำแหน่งในวงโคจร ครอบคลุมถึงสถานีภาคพื้นดิน และโครงข่าย จากนั้นจะต้องยื่นข้อมูลตามแบบฟอร์มที่กำหนดต่อ ITU-R ผ่านทางองค์กรของประเทศ


เป็นโครงการที่ถูกออกแบบให้สามารถนำชิ้นส่วนบางส่วนที่ใช้ไปแล้วกลับมาใช้ใหม่อีกเพื่อเป็นการประหยัดและมีประสิทธิภาพมากที่สุด ประกอบด้วย 3 ส่วนหลัก คือ จรวดเชื้อเพลิงแข็ง ถังเชื้อเพลิงภายนอก (สำรองไฮโดรเจนเหลวและออกซิเจนเหลว) และยานอวกาศ

ส่วนประกอบของระบบขนส่งอวกาศ ยานอวกาศ


ระบบขนส่งอวกาศมีน้ำหนักรวมเมื่อขึ้นจากฐานปล่อยประมาณ 2,041,200 กิโลกรัม โดยจรวดเชื้อเพลิงแข็งจะถูกขับเคลื่อนจากฐานปล่อยให้นำพาทั้งระบบขึ้นสู่อวกาศด้วยความเร็วที่มากกว่าค่าความเร็วหลุดพ้น เมื่อถึงระดับหนึ่งจรวดเชื้อเพลิงแข็งทั้งสองข้างจะแยกตัวออกมาจากระบบ จากนั้นถังเชื้อเพลิงภายนอกจะแยกตัวออกจากยานอวกาศ โดยตัวยานอวกาศจะเข้าสู่วงโคจรเพื่อปฏิบัติภารกิจต่อไป ดังรูป


ระบบขนส่งอวกาศ



การปฏิบัติภารกิจสำหรับระบบขนส่งอวกาศมีหลากหลายหน้าที่ ตั้งแต่การทดลองทางวิทยาศาสตร์ (ในสภาวะไร้น้ำหนัก) การส่งดาวเทียม การประกอบกล้องโทรทรรศน์อวกาศ การส่งมนุษย์ไปบนสถานีอวกาศ ฯลฯ ยานอวกาศจึงถูกออกแบบสำหรับบรรทุกคนได้ประมาณ 7-10 คน ปฏิบัติภารกิจได้นานตั้งแต่ไม่กี่ชั่วโมงหรืออาจใช้เวลาถึง 1 เดือน สำหรับโครงการขนส่งอวกาศขององค์การนาซามีอยู่ด้วยกัน 6 โครงการ คือ

1. โครงการเอนเตอร์ไพรส์ 
2. โครงการโคลัมเบีย 
3. โครงการดิสคัฟเวอรี 
4. โครงการแอตแลนติส 
5. โครงการแชลแลนเจอร์ 
6. โครงการเอนเดฟเวอร์ 


ปัจจุบันเป็นที่ทราบกันว่าโครงการแชลแลนเจอร์และโครงการโคลัมเบียประสบความสูญเสียครั้งร้ายแรง เมื่อยานทั้งสองเกิดระเบิดขึ้นขณะอยู่บนท้องฟ้า โดยระบบขนส่งอวกาศแชลแลนเจอร์ระเบิดเมื่อวันที่ 28 มกราคม 2529 ระหว่างเดินทางขึ้นสู่อวกาศไม่เพียงกี่นาทีด้วยสาเหตจากการรั่วไหลของก๊าซเชื้อเพลิงอุณหภูมิสูงจากรอยต่อของจรวดเชื้อเพลิงแข็งด้านขวาของตัวยาน ทำให้ก๊าซอุณหภูมิสูงดังกล่าวลามไปถึงถังเชื้อเพลิงภายนอกที่บรรจุไฮโดรเจนเหลว จึงเกิดการเผาไหม้อย่างรุนแรงและเกิดระเบิดขึ้น คร่าชีวิตนักบินอวกาศ 7 คน ส่วนระบบขนส่งอวกาศโคลัมเบียเกิดระเบิดขึ้นเมื่อวันที่ 1 กุมภาพันธ์ 2546 (17 ปี หลังการระเบิดของยานแชลแลนเจอร์) โดยวิศวกรนาซาเชื่อว่าอาจเพราะตัวยานมีการใช้งานยาวนานจนอาจทำให้แผ่นกันความร้อนที่หุ้มยานชำรุด ทำให้เกิดระเบิดขึ้นหลังจากนักบินกำลังพยายามร่อนลงสู่พื้นโลก แต่ทั้งสองเหตุการณ์ในสหรัฐอเมริกายังไม่ร้ายแรงเท่าเหตุการณ์ระเบิดของจรวดของสหภาพโซเวียตขณะยังอยู่ที่ฐาน เมื่อวันที่ 24 ตุลาคม 2503 โดยมีผู้เสียชีวิตจากเหตุการณ์ดังกล่าวถึง 165 คน โศกนาฏกรรมเหล่านี้ที่เกิดขึ้นแม้จะทำให้เกิดความสูญเสียทั้งชีวิตและทรัพย์สิน แต่มนุษย์ก็ยังไม่เลิกล้มโครงการอวกาศ ยังมีความพยายามคิดและสร้างเทคโนโลยีใหม่ๆ เพื่อความปลอดภัยและลดค่าใช้จ่ายให้มากขึ้น ด้วยเป้าหมายหลักของโครงการขนส่งอวกาศในอนาคตคือการสร้างสถานีอวกาศถาวรและการทดลองทางวิทยาศาสตร์อื่นๆ





1. มีการใช้ความรู้ทางวิทยาศาสตร์ในการศึกษา พัฒนา และประดิษฐ์อุปกรณ์ถ่ายภาพในช่วงคลื่น ๆ จากระยะไกล 
2. ทำให้เครื่องรับและส่งสัญญาณมีประสิทธิภาพมากขึ้น แล้วนำอุปกรณ์และเครื่องส่งสัญญาณไปประกอบเป็นดาวเทียม ที่ถูกส่งขึ้นไปโคจรจรอบโลก 
3. ทำให้สามารถสังเกตสิ่งต่าง ๆ บนโลกได้ระยะไกลในเวลาอันรวดเร็ว 
4. ได้เรียนรู้สิ่งต่าง ๆ เกี่ยวกับเอกภพ โลก ดวงจันทร์ และดาวอื่น ๆ
5. ความก้าวหน้าด้านเทคโนโลยีอวกาศ ช่วยเปิดเผยความลี้ลับในอดีต และก่อให้เกิดประโยชน์ต่อมนุษย์ในด้านต่าง ๆ มากมาย




ความก้าวหน้าของการสำรวจอวกาศอาจทำให้เกิดผลดี ดังนี้

-มนุษย์มีความรู้ความเข้าใจเกี่ยวกับปรากฏการณ์ทางดาราศาสตร์ดีขึ้น และช่วยเปิดเผยความลี้ลับของวัตถุท้องฟ้าในอดีต 

-เทคโนโลยีอวกาศได้รับการพัฒนาและนำมาใช้ในชีวิตประจำวัน เช่น เซลล์เชื้อเพลิง (fuel cell) เซลล์สุริยะ (solar cell) เป็นต้น





ดาวเทียมอุตุนิยมวิทยา 

เป็นดาวเทียมที่มีอุปกรณ์ถ่ายภาพเมฆ และเก็บข้อมูลของบรรยากาศในระดับสูง ช่วยให้ได้ข้อมูลที่สำคัญในการพยากรณ์อากาศได้อย่างถูกต้อง รวดเร็วรวมถึงการเฝ้าสังเกตการก่อตัว การเปลี่ยนแปลง และการเคลื่อนตัวของพายุที่เกิดขึ้นบนโลก ช่วยป้องกันหรือบรรเทาความเสียหายรุนแรงที่เกิดขึ้นได้อย่างมาก ข้อมูลจากดาวเทียมเป็นข้อมูลสำคัญมากในการพยากรณ์อากาศ




เป็นดาวเทียมที่มีอุปกรณ์สำรวจแหล่งทรัพยากรณ์ที่สำคัญ นอกจากนี้ยังเฝ้าสังเกตสภาพแวดล้อมที่เกิดบนโลก ช่วยเตือนอุทกภัย และความแห้งแล้งที่เกิดขึ้น การตัดไม้ทำลายป่า การทับถมของตะกอนปากแม่น้ำ รวมไปถึงแหล่งที่มีปลาชุกชุม และอื่นๆ อีกมาก




ดาวเทียมสังเกตการณ์ดาราศาสตร์ 

เป็นดาวเทียมที่มีกล้องโทรทรรศน์และอุปกรณ์ดาราศาสตร์สำหรับศึกษาวัตถุท้อง ฟ้า ดาวเทียมสังเกตการณ์ดาราศาสตร์มีทั้งหมดที่โคจรอยู่รอบโลกและประเภทที่โคจร ผ่านไปใกล้ดาวเคราะห์ หรือลงสำรวจดาวเคราะห์ ซึ่งเรีกยอีกอย่างว่ายานอวกาศ เช่นยานอวกาศวอยเอเจอร์ที่เดินทางผ่านเฉียดดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูล เป็นต้น

ดาวเทียมสื่อสาร 
เป็นดาวเทียมที่มีอุปกรณ์สื่อสารติดตั้งอยู่ เช่น ดาวเทียมอินเทลแซท (ภาพ 7.6 ) ดาวเทียมชุดนี้อยู่ในวงโคจรรอบโลก 3 แห่ง คือเหมือนมหาสมุทรอินเดียเพื่อการติดต่อระหว่างทวีปยุโรปเหนือมหาสมุทร แปซิฟิกเพื่อการติดต่อระหว่างทวีปเอเชียกับทวีปอเมริกา และและเหนือมหาสมุทรแอตแลนติกเพื่อการติดต่อระหว่างทวีปอเมริกากับทวีป ยุโรป เมื่อรวมทั้งระบบจึงสามารถติดต่อกันได้ทั่วโลก








ระบบสุริยะ

บทที่ 7 ระบบสุริยะ

ระบบสุริยะ


7.1 กำเนิดระบบสุริยะ 



ระบบสุริยะประกอบด้วยดวงอาทิตย์ ดาวเคราะห์ 9 ดวงและดวงจันทร์บริวารของดาวเคราะห์รวมกว่า 90 ดวง ดาวหางและอุกกาบาต วัตถุทั้งหมดในระบบสุริยะล้วนโคจรรอบดวงอาทิตย์ไปในทิศทางเดียวกันและมีระนาบทางโคจรเกือบตั้งฉากกับแกนหมุนของดวงอาทิตย์ ทั้งนี้อาจเป็นเพราะว่ามวลสารเหล่านี้เกิดมาพร้อมกับดวงอาทิตย์ ดวงอาทิตย์มีมวลมากที่สุดจึงเป็นจุดศูนย์กลางของระบบสุริยะ โดยมีแรงโน้มถ่วงยึดให้ดาวเคราะห์ทั้งหลายโคจรอยู่โดยรอบ

ดวงอาทิตย์ก่อกำเนิดขึ้นจากกลุ่มก๊าซและฝุ่น ที่เรียกว่า โซลาร์เนบิวลา (Solar Nebula) เมื่อประมาณ 4,600 ล้านปีที่ผ่านมา ตามลำดับขั้นตอนดังนี้

1) ด้วยอิทธิพลของแรงโน้มถ่วงของกลุ่มก๊าซและฝุ่นในโซลาร์เนบิวลาซึ่งหมุนรอบตัวเองทำให้ยุบตัวลงอย่างช้าๆ 
2) ก๊าซและฝุ่นส่วนใหญ่ยุบตัวลงทำให้ใจกลางของโซลาร์เนบิวลามีความกดดันสูงขึ้น และหมุนรอบตัวเองเร็วขึ้นเรื่อยๆ เป็นผลให้เศษฝุ่นและก๊าซที่เหลือโคจรรอบแกนหมุน มีรูปร่างเหมือนเป็นจานแบน ฝุ่นและก๊าซบางส่วนถูกเร่งออกมาจากแกนหมุน
 3) เมื่อมีอายุได้ประมาณ 100,000 ปี อุณหภูมิที่ใจกลางสูงถึง 15 ล้านเคลวิน จึงเริ่มเกิดปฏิกิริยาเทอร์โมนิวเคลียร์ขึ้นที่แกนกลาง เกิดเป็นดวงอาทิตย์ที่มีอายุน้อยส่องสว่างแต่ยังถูกห้อมล้อมไปด้วยก๊าซและฝุ่นที่เหลือเป็นจำนวนมาก 
4) เมื่อเวลาผ่านไปหลายสิบล้านปี ก๊าซและฝุ่นที่เหลือชนกันไปมา ทำให้บางส่วนเกาะติดกันจนมีขนาดใหญ่ขึ้น โดยเฉพาะบริเวณที่อยู่ใกล้ดวงอาทิตย์ซึ่งมีอุณหภูมิและแรงโน้มถ่วงที่สูงกว่าบริเวณที่ห่างออกไป 
5) ก๊าซและฝุ่นบริเวณขอบนอกอยู่ในบริเวณที่มีอุณหภูมิต่ำกว่าและได้รับอิทธิพลจากแรงโน้มถ่วงน้อยกว่าบริเวณที่ใกล้ดวงอาทิตย์ จึงยุบรวมตัวกันอย่างช้าๆ ก่อตัวเป็นดาวเคราะห์ขนาดใหญ่ที่เต็มไปด้วยก๊าซเป็นจำนวนมาก 
6) ใช้เวลานับร้อยล้านปี ดาวเคราะห์ต่างๆ จึงจะมีรูปร่างที่เกือบสมบูรณ์ เศษหินและฝุ่นที่เหลือกลายเป็นดาวเคราะห์น้อย ดวงจันทร์บริวารและวงแหวนของดาวเคราะห์ รวมทั้งวัตถุขนาดเล็กและดาวหาง



ภาพแสดงลำดับขั้นตอนการเกิดระบบสุริยะจากจากกลุ่มก๊าซยุบตัวลงด้วยอิทธิพลของแรงโน้มถ่วง มาเป็นดวงอาทิตย์และดาวเคราะห์ต่างๆ





7.2 เขตของบริวารดางอาทิตย์ 

นักดาราศาสตร์แบ่งเขตพื้นที่ของระบบสุริยะออกเป็น 4 เขต โดยใช้ลักษณะการก่อตัวของบริวารของดวงอาทิตย์เป็นเกณฑ์ คือ



orbit



1. เขตดาวเคราะห์ชั้นในหรือดาวเคราะห์หิน เป็นดาวเคราะห์ที่มีพื้นผิวแข็งหรือเป็นหินเหมือนโลก บางครั้งจึงเรียกว่า ดาวเคราะห์แบบโลก ได้แก่ ดาวพุธ ดาวศุกร์ โลก และดาวอังคาร เชื่อกันว่าดาวเคราะห์ชั้นในเกิดจากมวลสารของเนบิวลาที่อยู่ถัดออกมาจากบริเวณใจกลาง ที่ไม่ได้เคลื่อนที่ไปรวมกับมวลสารที่เกิดดวงอาทิตย์ แต่เคลื่อนที่รอบดวงอาทิตย์และมีอุณหภูมิพอเหมาะที่จะเกิดเป็นก้อนหินขนาดต่างๆ กันจำนวนมาก ก้อนใหญ่จะดึงก้อนเล็กเข้าหาด้วยแรงโน้มถ่วงพอกพูนกลายเป็นดาวเคราะห์ที่มีความหนาแน่นสูง ดาวเคราะห์ชั้นในจะใช้เวลาในการเกิดประมาณ 100 ล้านปี 

2. เขตดาวเคราะห์น้อย เป็นมวลสารที่อยู่ระหว่างวงโคจรของดาวอังคารและดาวพฤหัสบดี คาดว่ามี การก่อตัวเช่นเดียวกับวัตถุที่ก่อกำเนิดเป็นดาวเคราะห์ชั้นใน เศษที่เหลือของการสร้างดาวเคราะห์หินถูกแรงรบกวนของดาวพฤหัสบดีที่มีขนาดใหญ่และเกิดพร้อมดวงอาทิตย์ ทำให้มวลสารในบริเวณแถบดาวเคราะห์น้อยจับตัวเป็นก้อนขนาดใหญ่ไม่ได้ จึงกลายเป็นดาวเคราะห์น้อยที่มีขนาดเล็กจำนวนมาก


asteroid_all-3_big


3. เขตดาวเคราะห์ชั้นนอกหรือดาวเคราะห์ยักษ์ เป็นดาวเคราะห์ที่มีขนาดใหญ่ องค์ประกอบหลักเป็นแก๊สไฮโดรเจนและแก๊สฮีเลียม ได้แก่ ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูน เกิดจากมวลสารของเนบิวลาที่อยู่ถัดออกมาจากดาวเคราะห์หิน ดาวเคราะห์ยักษ์เกิดจากการสะสมของแก๊สและสารที่ระเหยง่าย เช่น น้ำ เข้าไว้เป็นก้อนใหญ่ แก๊สส่วนใหญ่หลุดจากดวงอาทิตย์ และบริเวณชั้นในของระบบสุริยะที่ดวงอาทิตย์ส่งแรงดันของการแผ่รังสีผลักแก๊สเหล่านี้ออกไปไกล รวมกันเป็นดาวเคราะห์ชั้นนอกซึ่งมีความหนาแน่นต่ำ ดาวเคราะห์ชั้นนอกบางดวงมีความหนาแน่นน้อยมาก

 4. เขตของดาวหาง อยู่บริเวณขอบนอกของระบบสุริยะ ดาวหางเกิดจากเศษที่เหลือจากการสร้าง ดาวเคราะห์ยักษ์ ดาวหางเป็นวัตถุท้องฟ้าที่ประกอบด้วยน้ำและแก๊สที่เย็นจัด รวมตัวกันเป็นก้อนน้ำแข็ง โดยมีฝุ่นและแร่ธาตุต่างๆ มารวมตัวกัน เมื่อดาวหางโคจรมาใกล้ดวงอาทิตย์ จะดูดพลังงานจากดวงอาทิตย์ในรูปของพลังงานความร้อนและรังสี ทำให้ก้อนน้ำแข็งกลายเป็นไอกระจายออกไป ประกอบกับลมสุริยะผลักดันให้แก๊สและฝุ่นในส่วนหัวพุ่งไปในทิศทางตรงกันข้ามกับดวงอาทิตย์ ปรากฏเป็นหางยาวและมีแสงสว่างจ้า ซึ่งเกิดจากการสะท้อนแสงของแก๊สในดาวหาง หางของดาวหางจะยาวขึ้นเมื่อโคจรใกล้ดวงอาทิตย์มากขึ้น



7.3 ดวงอาทิตย์

sun01


ดวงอาทิตย์เป็นดาวฤกษ์ที่อยู่ตรงใจกลางของระบบสุริยะ ดวงอาทิตย์ให้แสงสว่าง ความร้อน และพลังงานรูปแบบอื่นแก่โลก ดวงอาทิตย์อยู่ในสถานะที่เรียกว่า พลาสมา พลาสมาคือ สถานะที่ 4 ของสสาร คือ แก๊สที่อิเล็กตรอนไม่ได้ยึดติดกับนิวเคลียส ดังนั้น พลาสมาจึงมีความเป็นกลางทางประจุไฟฟ้า รอบ ๆ ดวงอาอาทิตย์ประกอบด้วยดาวเคราะห์ต่าง ๆ กับดาวบริวารของมัน ดาวเคราะห์น้อยอีกนับแสน และดาวหางอีกเป็นล้านล้าน ทั้งหมดนี้รวมเรียกว่า ระบบสุริยะ



ดวงอาทิตย์อยู่ห่างจากโลกประมาณ 150 ล้านกิโลเมตร หรือ 1 AU (Astronomical Unit) มีมวลประมาณ 1.9×1030 กิโลกรัม มีรัศมี (วัดบริเวณเส้นศูนย์สูตร) ประมาณ 695,500 กิโลเมตร ดวงอาทิตย์ประกอบด้วยไฮโดรเจน 75% ต่อมวล ฮีเลียม 25% ต่อมวล และธาตุหนักอื่น ๆ อีกน้อยกว่า 1% ต่อมวล



ผิวของดวงอาทิตย์ที่เรามองเห็นได้มีอุณหภูมิประมาณ 5,500 องศาเซลเซียส นักดาราศาสตร์วัดอุณหภูมิผิวดาวฤกษ์ในหน่วยของเคลวิน ซึ่ง 1 เคลวิน เท่ากับ 1 องศาเซลเซียส เท่ากับ 1.8 องศาฟาเรนไฮต์ แต่จุดเริ่มต้นของเคลวินและองศาเซลเซียสแตกต่างกัน โดยเคลวินเริ่มที่ 0 เคลวิน แต่องศาเซลเซียสเริ่มที่ -273.15 องศาเซลเซียส (เท่ากับ -459.67 องศาฟาเรนไฮต์) ดังนั้น อุณหภูมิที่ผิวดวงอาทิตย์จะมีค่าประมาณ 5,800 เคลวิน และอุณหภูมิที่แกนกลางของดวงอาทิตย์สูงถึงประมาณ 15 ล้านเคลวิน

พลังงานของดวงอาทิตย์มาจากปฏิกิริยานิวเคลียร์ฟิวชัน ซึ่งเกิดที่แกนกลางของดวงอาทิตย์ ปฏิกิริยานิวเคลียร์ฟิวชันคือการรวมกันของอะตอมของธาตุเบาได้อะตอมใหม่ที่มีมวลน้อยกว่ามวลรวมของอะตอมเริ่มต้น และมวลที่หายไปนั้นถูกเปลี่ยนเป็นพลังงาน

ดวงอาทิตย์มีความเป็นแม่เหล็ก นักวิทยาศาสตร์อธิบายความเป็นแม่เหล็กของสารในรูปแบบของสนามแม่เหล็ก ซึ่งบริเวณที่สนามแม่เหล็กมีผลจะรวมถึงอวกาศที่อยู่รอบ ๆ วัตถุแม่เหล็กนั้นด้วย สนามแม่เหล็กของดวงอาทิตย์จะเข้มมากที่บริเวณเล็ก ๆ บนผิวที่เราเรียบกว่าจุดมืด (sunspots) บนดวงอาทิตย์ บางครั้งจะมีการลุกจ้า (flares) และการปลดปล่อยก้อนมวลจากชั้นโคโรนา (coronal mass ejection) จากจุดมืดนี้ด้วย

การลุกจ้า (flares) เป็นเหตุการณ์ที่รุนแรงมากเหตุการณ์หนึ่งในระบบสุริยะ และการปลดปล่อยก้อนมวลจากชั้นโคโรนา (coronal mass ejection) ซึ่งมีความรุนแรงมากกว่าการลุกจ้า การปลดปล่อยก้อนมวลครั้งหนึ่งอาจปล่อยมวลสารออกมามากถึง 20,000 ล้านตันสู่อวกาศ

ดวงอาทิตย์เกิดมาเมื่อประมาณ 4,600 ล้านปีที่แล้ว และยังมีเชื้อเพลิงมากเพียงพอที่จะอยู่ต่อไปอีก 5,000 ล้านปี หลังจากนั้นมันจะกลายเป็นดาวยักษ์แดง (red giant) และในที่สุดเมื่อชั้นบรรยากาศของมันหมดไป แกนกลางก็จะยุบตัวกลายเป็นดาวแคระขาว (white dwarf)









วันอาทิตย์ที่ 14 มกราคม พ.ศ. 2561

เอกภพ

เอกภพ






                                    ระบบทางดาราศาสตร์ประกอบไปด้วยโลก ดวงอาทิตย์ ดาวเคราะห์ และสมาชิกอื่นๆในระบบสุริยะ ดวงอาทิตย์เป็นเพียงดาวฤกษ์หนื่งในแสนล้านดวงในกาแล็กซีของเราหรือกาแล็คซีทางช้างเผือก ( Milky Way galaxy )  ระบบที่ใหญ่กว่ากาแล็คซี คือ กระจุกกาแล็คซี ( cluster of galaxies ) ซึ่งประกอบไปด้วยกาแล็คซีขนาดใหญ่เล็กจำนวนนับพันและสสารต่างๆ ที่อยู่ระหว่างกาแล็คซีเหล่านั้น




เอกภพวิทยาในอดีต


                     1.เอกภพของชาวสุเมเรียนและชาวบาบิโลน


                               ช่วงเวลาประมาณ 7,000 ปีก่อนคริสต์ศักราช นักวิทยาศาสตร์เชื่อว่ามีชนชาติที่มีอารยธรรมอาศัยอยู่ในบริเวณตอนกลางของเอเชียซึ่งปัจจุบันคือประเทศอิรัก ดินแดนแห่งนี้เรียกว่า เมโสโปเตเมีย เรียกตนเองว่า ชาวสุเมเรียน ชาวสุเมเรียนได้ประดิษฐ์คิดค้นตัวอักษรที่เรียกว่า คูนิฟอร์ม ลงแผ่นดินไหว พบการบันทึกตำแหน่งดาวฤกษ์และดาวเคราะห์โดยมีโลกแบน อยู่กับที่และเป็นศูนย์กลางของการเคลื่อนที่ทั้งหมดพร้อมกับการตั้งชื่อกลุ่มดาวอีกหลายกลุ่มบนท้องฟ้าด้วย  ปรากฏการณ์การเคลื่อนที่ของดวงดาวต่างๆตามความเชื่อที่ว่าเทพเจ้าที่ปกครองโลก ท้องฟ้าและแหล่งน้ำต่างๆ เป็นผู้ดลบันดาลให้เป็นไป ดังนั้นเอภพของชาวสุเมเรียนก็คือท้องฟ้า ที่ประกอบไปด้วยดวงดาวต่างๆ ที่เคลื่อนที่ตามเวลาซึ่งเป็นผลจากการบันดาลของเทพเจ้า






         ในช่วงเวลาประมาณ 2,000 ปี ถึง 500ปีก่อนคริสต์ศักราช ชาวบาบิโลนได้เริ่มสังเกตและจดบันถึงการเคลื่อนที่ของดวงดาวต่างๆ โดยอาศัยพื้นฐานควาทรู้ทางดาราศาสตร์ของชาวสุเมเรียน ชาวบาบิโลนได้จัดทำแค็ตต่ล็อกดาวฤกษ์และดาวเคราะห์พร้อมทั้งได้ระบุเส้นทางการขั้นตกของดาวฤกษ์และดาวเคราะห์ทุกๆวัน ความรู้นี้สามารถนำมาทำนายการเคลื่อนที่ของดาวเคราห์ ดววจันทร์ ดวงอาทิตย์ และการเปลี่ยนแปลวฤดูกาลได้อย่างถูกต้อง มีการทำปฏิทินแสดงวันที่และฤดูกาล ความเชื่อในเรื่องเอกภพของชาวบาบิโลนกับชาวสุเมเรียนก็ยังเหมือนกัน



                   2.เอกภพของกรีก



                           พัฒนาขึ้นโอนอาศัยข้อมูลความรู้ทางดาราศาสตร์ของชาวสุเมเรียนและชาวบาบิโลน ชาวกรีกได้ประยุกต์ความรู้ทางคณิตศาสตร์ในเรื่องของการจำนวนและเรขาคณิตในการพัฒนาแบบลำลองเอกภพ และชาวกรีกเป็นชนกลุ่มแรกที่เริ่ใช้คำว่า คอสโมโลจี ( cosmokogy ) ซึ่งมีควาทหมายว่าเอกภพวิทยา อาริสโตเติล เสนอแนวคิดว่าโลกมีลักษณะเป็นทรงกลม โลกเขาสังเกตว่าดาวฤกษ์ที่เคลื่อนที่รอบดาวเหนือบางดวงสามารถสังเกตเห็นได้ที่อียิปต์แต่ไม่สามารถเห็นได้ที่กรีซ นอกจากนั้นอาริสตาร์คัส แห่งซามอสนักคณิตศาสตร์และนักปราชญ์ชาวกรีกคนแรกที่ระบุว่าโลกโคจรรอบดวงอาทิตย์โดยดวงอาทิตย์เป็นจุดศูนย์กลาง และโลกจะโคจรครบ 1 รอบ ในเวลา 1 วัน ดังนั้นแบบจำลองเอกภะของกรีกจึงเป็นแบบจำลองที่อธิบายว่าโครงสร้างทา ใหญ่ที่สีดที่มนุษย์รู้จักในสมัยนั้นมีลักษณะที่อธิบายได้ทางเรขาคณิต  แต่ทอเลมี นักปราชญ์ชาวกรีกเชื่อว่าโลกแบน อยู่กับที่ ดวงดาวเคลื่อรอบโลก




                  3.เอกภพของเคพเลอร์



                             ทิโค บาร์ ( Tycho Brahe ) สังเกตการเคลื่อนที่ของดาวเคราะห์และจดบันทึกตำแหน่งอย่างละเอียด ผลที่ได้จากการสังเกตนี้ทำให้เขาไม่เชื่อในคำอธิบายการโคจรของดาวเคราะห์รอบดวงอาทิตย์ของโคเพอร์นิคัสที่กล่าวว่าดาวเคราะก์เคล่อที่รอบดวงอาทิตย์เป็นวงกลม โยฮันเนส เคพเลอร์ (Johannes Kepler ) ได้บันทึกตำแหน่งดาวเคราะ์เพิ่มเติมชองการสังเกตของทิโค บาร์ แล้วจึงตั้งแบบจำลอใที่อธิบายการเคลื่อนที่ของดวงดาวต่างๆ ว่าดาวเคราะห์จะโคจรรอบดวงอาทิตย์เป็นวงรี โดยมีดวงอาทิตย์อยู่ที่จุดโฟกัสจุดหนึ่งของวงโคจร ต่อมาภายหลังแบบจำลองของเคปเลอร์ได้รับการยอมรับและกลายเป็นกฎการเคลื่อนที่ 3 ข้อ ของเคปเลอร์ที่ใช้กันอยู่ในปัจจุบัน






                   4.เอกภพของกาลิเลโอ


                             กาลิเลโอ กาลิเลอี เป็นคนแรกที่ใช้กล้องโทรทรรศน์ศึกษาดาราศาสตร์พบว่าผิวของดวงจันทร์มีภูเขาและหลุมอุกกาบาต และทางช้างเผือกที่มองเห็นเป็นฝ้าขุ่นๆแท้จริงแล้วคือดาวฤกษ์ ต่อมา เซอร์ ไอแซก นิวตัน ได้ค้นพบว่สลักษณะการโคจรดังกล่าวเกิดจากผลของแรงโน้มถ่วง ขนาดของแรง ขึ้นอยู่กับมวลและระยะห่าง





     กำเนิดเอกภพ

                           เอกภพความกว้างใหญ่ไพศาลประกอบด้วย กาแล็คซีประมาณแสนล้านกาแล็คซีแต่ละกาแล็คซีมีเส้นผ่านศูนย์กลางปรุมาณ 100,000 ปีแสง 1 ปีแสง คือ ระยะทางที่แสงใช้ในการเดินทาง 1 ปี มีค่าประทาณ 9.5 ล้านล้านกิโลเมตร ทฤษฎีที่ใช้ในการอธิบายการเกิดของเอกภพ ได้แก่ ทฤษฎีบิกแบง (Big Bang Theory )






     ทฤษฎีบิกแบง


                                   เป็นทฤษฎีที่ดล่าวถึงการเปลี่ยนแปลวของพลังงานมาเป็นมวลสารของเอกภพ ขณะเกิดบิกแบง ได้ปรากฏมีอนุภาคพื้นฐาน ได้แก่ ควาร์ก (Quark) อิเล็กตรอน นิวทริโน และโปรตอน
อนุภาคเหล่านี้มีปฏิอนุภาค (anti-particle)ของมันด้วย หากอนุภาคใดพบกับปฏิอนะภาคของมันจะเกิดการหลอมรวมกันของอนุภาคทั้งสอง ทำให้อนุภาคทั้งสองกลายเป็นพลังงานในเอกภพมีจำนวนอนุภาคมากกว่าจำนวนปฏิอนุภาค จึงทำให้มีอนุภาคเหลืออยู่ในเอหภพ และก่อให้เกิดเป็นสสารต่างๆ ในเอกภพในปัจจุบัน หลังจากเกิดบิกแบง 2 ไมโครวินาที อุณหภูมิของเอกภพลดลงประมาณ 10 ล้านล้านเคลวินและควารํกรวมตัวกันกลายเป็นโปรตอรและนิวตรอน  หลังเกิดบิงแบกได้ 3นาที อุณหภูมิของเอกภพลดลงไปอีกเป็น100ล้านเคลวิน และเกิดการรวมตัวของโปรตอนกับนิวตรอนกลายเป็นฮีเลียมในช่วงนี้เอหภพขยายตัวเร็วมาก เมื่อเวลาผ้านไปประมาณ 300,000 ปี อุณหภูมิของเอกภพลดลวเหลือ 10,000 เคลวิน นิวเคลียสของไฮโดรเจนและฮีเลียมดึงอิเล็กตรอนเข้ามาเป็นวงโคจร เกิดเป็นอะขึ้นมา (มีไฮโดรเจนมากที่สุด)หลังเกิดบิกแบงอย่างน้อย 1,000 ล้านปี ได้เกิดมีกาแล็คซี โดยภายในกาแล็คซีมีธาตไฮโดรเจนและฮีเลียมเป็นสารเบื้องต้นในการก่อกเนิดดาวฤกษ์รุ่นแรกๆ






    หลักฐานสนับสนุนบิกแบง


                               การขยายตัวของเอกภพ (Edwin Powell Hubble)พบว่ากาแล็คซีทั้งหลายกำลึงเคลื่อยที่ออกจากกัน (หรือกล่าวได้ว่ากาแล็คซีทั้งหลายกำลึงเคลื่อนที่ออกจากเา)แสดงว่สเอกภพกำลังขยายตัวซึ่งเป็นผลมาจากการระเบิดครั้งใหญ่ อุณหภูมิพื้นหลังของเอกภพ ที่ปัจจุบันลดลงเหลือประมาณ3 เคลวิน มีการค้นพบสัญญาณรบกวนกล้องโทรทรรศน์วิทยุ สัญญาณดังกล่าวคื ซึ่งเทียบได้กับพลังงานของวัตถุดำที่มีอุณหภูมิประมาณ 3 เคลวิน

 

     กฎฮับเบิล






        V=H0D
       H0=75 km/(sMpc)








       กาแล็คซี ( Galaxy )


                                กาแล็คซี คือ ระบบของดาวฤกษ์หรือเป็นอาณาจักรของดาวฤกษ์ กาแล็คซีประกอบด้วยดาวฤกษ์ประมาณแสนล้านดวง แต่ละกาแล็คซีคงสภาพอยู่ได้ด้วยแรงโน้มถ่วงระหว่างดาวฤกษ์กับหลุมดำ ระหว่างดาวฤกษ์จะมรกลุ่มแก๊สและฝุ่นละออง เรียกว่า เนบิวลา ( nebula ) กาแล็คซีของเร่มีชื่อว่า กสแล็คซีทางช้างเผือก กาแล็คซีเพื่อนบ้าน ซึ่งสังเกตเห็นได้ด้าวตาเปล่า ได้แก่ กาแล็คซีแอนโดรเมดา กาแล็คซีแมกเจลแลนใหญ่ กาแล็คซีแมกเจลแลนเล็ก  การกระจายของดาวฤกษ์ในกาแล็คซีทางช้างเผือก






    ประเภทของกาแล็คซี


1.กาแล็คซีปกติ ( regular galaxy )  คือกาแล็คซีที่มีรูปร่างขัดเจน ได้แก่



การแล็คซีรี (E)




กาแล็คซกังหัน (S)




2.กาแล็คซีแบบไม่มีรูปร่าง  ( Irregular Galaxy )  เป็นกาแล็คซีที่มีรูปร่างที่ไม่แน่นอน เช่น กาแล็คซีแมกเจบแลนใหญ่ และกาแล็คซีแมกเจลแลนเล็ก












อ้างอิงจาก หนังสือเรียนโลก ดาราศาสตร์และอวกาศ สสวท.

วันอาทิตย์ที่ 17 ธันวาคม พ.ศ. 2560

ธรณีประวัต

ธรณีประวัติ





ตั้งแต่โลกเริ่มเย็นตัวเมื่อประมาณ 4600 ล้านปีที่แล้ว มีการเปลี่ยนแปลงเกิดขึ้นเรื่อยมา จนทำให้โลกมีสภาพเช่นปัจจุบัน การเปลี่ยนแปลงดังกล่าวมรผลให้บริเวณที่เคยเป็นทะเลแห่งกลายเป็นภูเขา ภูเขาบางลูกถูกกัดเซาะเปลี่ยนเป็นที่ราบ นอกจากนี้ยังส่งผลถึงวิวัฒนาการของสิ่งมีชีวิต ซึ่งมีทั้งดำรงอยู่และการเกิดใหม่

 ข้อมูลทางธรณีวิทยาอธิบายความเป็นมาของพื้นที่ในอดีตที่นิยมใช้มี 3 อย่าง ดังนี้

1.อายุทางธรณีวิทยา

- อายุเทียบสัมพันธ์  
          
          คือ อายุเปรียบเทียบหาได้โดยอาศัยข้อมูลจากซากดึกดำบรรพ์ที่ทราบอายุแล้วนำมาเปรียบเทียบกับช่วงเวลาทางธรณีที่เรียกว่าธรณีกาล จะบอกได้ว่าเป็นหินในยุคไหนหรือมีช่วงอายุเท่าไร


-อายุสัมบูรณ์
         เป็นอายุของหินหรือซากดึกดำบรรพ์ที่สามารถบอกเป็นจำนวนปีที่ค่อนข้างแน่นอน คำนวณจากครึ่งชีวิตของธาตุกัมมันตรังสีที่มีอยู่ในหิน เช่น C-14, K-40, Rb-87,U-238 เป็นต้น
หินที่มีอายุมากเป็นแสนเป็นล้าน เช่น หินแกรนิตบริเวณฝั่งตะวันตกของเกาะภูเก็ต ซึ่งเป็นหินต้นกำเนิดแร่ดีบุก จะใช้ Rb-87
ตะกอนหรือซากดึกดำบรรพ์ที่มีอายุน้อยกว่า 70000 ปี จะใช้วิธีกัมมันตรังสี C-14 เช่น ซากหอยนางรมที่วัดเจดีย์หอย จังหวัดปทุมธานี




2.ซากดึกดำบรรพ์ 

-  ซากดึกดำบรรพ์เป็นซากพืช ซากสัตว์ ที่ตายทับถมอยู่ในชั้นหินตะกอนแล้วเปลี่ยนเป็นหิน ได้แก่ ซากพืช ซากสัตว์ และร่องรอย
- ซากดึกดำบรรพ์บางชนิดปรากฎให้เห็นเป็นช่วงสั้นๆ ดังนั้นสามารถใช้บอกอายุของหินที่มีซากดึกดำบรรพ์อยู่ใต้ ซากดึกดำบรรพ์ประเภทนี้เรียกว่า ซากดึกดำบรรพ์ดัชนี
- ซากดึกดำบรรพ์ดัชนี คือ ซากดึกดำบรรพ์ที่บอกช่วงอายุได้แน่นอน และปรากฎให้เห็นเพียงช่วงอายุหนึ่งแล้วสูญพันธุ์ 
- ประเทศไทยพบซากดึกดำบรรพ์ดัชนี คือ ไทรโลไบต์ บริเวณเกาะตะรุเตา แกรปโตไลต์ อำเภอฝาง เชียงใหม่ เป็นต้น




3.ลำดับชั้นหิน

             เนื่องจากชั้นหินเกิดจากการทับถมของตะกอน ดังนั้นหินตะกอนที่อยู่ด้านล่างจะเกิดก่อน และหินที่อายุน้อยกว่าจะซ้อนอยู่ด้านบนเป็นชั้นๆ ตามลำดับ





อ้างอิงจาก หนังสือโลก ดาราศาสตร์ และอวกาศ สสวท.

ปรากฏการณ์ทางธรณีวิทย

ปรากฏการณ์ทางธรณีวิทยา







แผ่นดินไหว


สาเหตุและกลไกในการเกิดแผ่นดินไหว

- การเคลื่อนที่ของเปลือกโลกตามแนวระหว่างรอยต่อของแผ่นธรณีภาค ทำให้เกิดแรงพยายามกระทำต่อชั้นหินขนาดใหญ่ เพื่อจะทำให้ชั้นหินนั้นแตกหัก ขณะชั้นหินยังไม่แตกหัก เกิดเป็นพบังงานศักดิ์ขั้นที่ชั้นหินนั้น
- เมื่อมีแรงขนาดมากจนทำให้แผ่นหินแตกหัก จะเกิดการถ่ายโอนพลังงานนั้นไปยังชั้นหินที่อยู่ติดกันการถ่ายโอนพลังงานเกิดขึ้นอย่างต่อเนื่องในรูปของคลื่น แผ่ออกไปทุกทิศทาง คลื่นที่แผจากจุดกำเนิด การสั่นสะเทอนขึ้นมายังเปลือกโลกได้ เรียกคลื่นนี้ว่า " คลื่นในตัวกลาง"
อัตราเร็วในการแผ่ของคลื่นแผ่นดินไหวขึ้นอยู่กับความยืดหยุ่นและความหนาแน่นของตัวกลาง
- เรียกจุดกำเนิดการั่นสะเทือนของคลื่นว่า "ศูนย์เกิดแผ่นไหว
- ตำแหน่งบนผิวโลกทีอยู่เหนือศูนย์เกิดแผ่นดินไหวเรียกว่า จุดเหนือศูนย์เกิดแผ่นดินไหว ซึ่งจะมี " คลื่นพื้นผิว " กระจายออกไปตามแนวผิวโลก
- การระเบิดของภูเขาไฟอาจเป็นสาเหตุของแผ่นดินไหวได้
- การเคลื่อนตัวของแมกมาตามเส้นทางมายังปากปล่องภูเขาไฟ อาจทำให้เกิดแผ่นไหวก่อนที่แมกมานั้นระเบิดออกมาเป็นลาวา
- การกระทำของมนุษย์ เช่น การทดลองระเบิดปรมาณูใต้ดินก็อาจจะเป็นสาเหตุให้เกิดแผ่นไว




คลื่นพื้นผิว



1.คลื่นเลิฟ (love wave) หรือคลื่นL เป็นคลื่นที่ทำให้อนุภาคของตัวกลางสั่นในแนวราบบริเวณใกล้กับผิวโลกโดยมีทิศทางตั้งฉากกับทิศทางการเคลื่อนที่ของคลื่น คลื่นเลิฟเป็นคลื่นที่สร้างความเสียหายให้กับฐานรากของอาคาร และสิ่งปลูกสร้างต่างๆ
2.คลื่นเรย์ลี ( rayleigh wave ) หรือคลื่นRเป็นคลื่นที่ทำให้อนุภาคของตัวกลางเคลื่อนที่ในระนาบแนวดิ่งเป็นวงรีในทิศทางเดียวกับการเคลื่อนที่ของคลื่น ทำให้พื้นผิสโลกมีการสั่นขึ้นลง




ไซโมกราฟ

          เป็นเครื่องมือบันทึกข้อมูลแผ่นดินไหวมีเป็นเครือข่ายทั่วโลก






แนวแผ่นดินไหว

1.แนวรอยต่อที่เกิดล้อมรอบมหาสมุทรแปซิฟิก เป็นบริเวณขอบมหาสมุทรแปซิฟิกทั้งหมดจัดเป็นบริเวณที่เกิดแผ่นดินไหวค่อนข้างรุนแรง คิดเป็นร้อยละ80 ของการการเกิดแผ่นไหวทั่วโลกเรียกกันว่า วงแหวนแห่งไฟ ( ring of fire ) ได้แก่ ประเทศญี่ปุ่น ฟิลิปปินส์ ด้านตะวันตกของประเทศเม็กซิโกและด้านตะวันตกเฉียงใต้ของสหรัฐอเมริกา แผ่นดินไหวในบริเวณนี้มีศูนย์เกิดแผ่นดินไหวระดับตื้น ปานกลาง และลึก
2.แนวรอยต่อภูเขาเอลป์ในทวีปยุโรปและภูเขาหิมาลัยในทวีปเอเชีย
 เป็นแหล่งที่เกิดแผ่นดินไหวประมาณร้อยละ15 ได้แก่ ปริเวณประเทศพม่า อัฟกานิสถาน อิหร่าน ตรุกี และแถบทะเลเมดิเตอร์เรเนียนในยุโยป แผ่นดินไหวในบริเวณนี้มีศูนย์เกิดแผ่นดินไหวระดับตื้นและปานกลาง
3.แนวรอยต่อที่เหลืออีกรอยละ 5 เกิดในบริเวณแนวเทือกเขากลางมหาสมุทรต่างๆของโลก ได้แก่ บริเวณเทือกเขากลางมหาสมุทรแอตแลนติก แนวสันเขาใต้มหาสมุทรอินเดียและอาร์กติก ศูนย์เกิดแผ่นดินไหวบริเวณนี้อยู่ที่ระดับตื้นและเกิดเป็นแนวแคบ




ความรุนแรงของการเกิดแผ่นดินไหว

- ความรุนแรงของการเกิดแผ่นดินไหวขึ้นอยูากับพลังงานที่ปลดปล่อยออกมาจากศูนย์เกิดแผ่นดอนไหว
- ความรุนแรงของแผ่นดินไหว กำหนดจากผลกระทบหรือความเสียหายที่เกิดขึ้นบนผิวโลก ณ จุดสังเกต
-หน่วยวัดขนาดของแผ่นดินไหว คือ ริกเตอร์ ตามชื่อของ Charles F. Richter
- น้อยกว่า 2.0 ริกเตอร์ เป็นแผ่ดินไหวขนาดเล็ก และ 6.0 ริกเตอร์ขึ้นไป จัดเป็นแผ่นดินไหวรุนแรง


มาตราเมอร์คัลลี

        คือ มาตราวัดความรุนแรงของแผ่นดินไหว ซึ่งกำหนดจากผลกระทบหรือความเสียหาย แบ่งเป็น 12 ระดับ ดังนี้
1.คนไม่รู้สึกสั่นไหว แต่เครื่องมือตรวจจับได้
2.คนในอาคารรู้สึกได้
3.คนในอาคารแม้ไม่สูงมากก็รู้สึก
4.คนในอาคารและคนนอกอาคารบางส่วนรู้สึกได้ ของในอาคารสั่นไหว
5.รู้สึกได้ทุกคน ของขนาดเล็กเครื่องที่
6.วัตถุขนาดใหญ่ในอาคารมีการเครื่อนที่
7.อาคารมาตราฐานปานกลางเสียหายเล็กน้อย
8.อาคารที่ออกแลลพิเศษเสียหายเล็กน้อย อาคารมาตราฐานต่ำเสียหายมาก
9.อาคารที่ออกแบบพิเศษเสียหายชัดเจน แผ่นดินแยก
10.แผ่นดินแยกถล่ม โคลนทรายพุ่งขึ้นจากรอยต่อ
11.ดินถล่มและเลื่อนไหล
12.ทุกสิ่งโดนทำลาย พื้นดินเป็นลอนคลื่น



แผ่นไหวในประเทศไทย

รอยต่อมีพลัง ( active fault ) 
           เป็นรอยต่อเลื่อนที่มีหลักฐานทางธรณีวิทยาว่ายังคงมีการเลื่อนตัวในปัจจุบัน และอาจเลื่อนตัวอีกในอนาคต ในประเทศไทยแนวรอยเลื่อเหล่านี้ส่วนมากอยู่ในภาคเหนือและภาคตะวันตกของประเทศ เช่น รอยเลื่อนเชียงแสน รอยเลื่อนแม่ทา รอยเลื่อนเถิน ส่วนภาใต้รอยเลื่อนระนอง เป็นต้น




คาบอุบัติซ้ำ  ( return period )

     คือ ระยะเวลาครบรอบของแผ่นดินไหวที่เคยเกิดขึ้น ณ ที่นั้นแล้ว กลับมาเกิดซ้ำในที่เดิมอีก อาจเป็นร้อยปี พันปี หรือน้อยกว่านั้น



การปฏิบัติขณะเกิดผแ่นดินไหว

1.อย่าสติอย่าตื่นตระหนกเกินเหตุ หยุดการใช้ไฟฟ้าและไฟจากเตาแก๊ส และควรมีไฟฉายประจำตัวอยู่ภายในบ้าน
2,ถ้าอยู่ภายในบ้านควรอยู่ให้ห่างประตู หน้าต่าง กระจก และระเบียง ระวังอย่าให้สิ่งของภายในบ้านหล่นทับ โดยอาจมุดอยู่ใต้โต๊ะ
3.ถ้าอยู่ใต้ตึกสูง ให้อยู่ไปใต้โต๊ะที่แข็งแรวเพื่อป้องกันสิ่งของร่วงหล่นใส่ อย่าวิ่งออกไปภายนอก เพราะบันไดอาจจะพังลงได้ และห้ามใช้ลิฟท์โดยเด็ดขาด
4.ถ้าท่านกำลังขับรถให้หยุดรถและอยู่ภายในรถ จนกระทั่งการสั่นสะเทอนหยุด
5,หากอยู่ชายหาดให้อยู่ห่างจากายหาด เพราะอาจเกิดคลื่นขนาดใหญ่ซัดเข้าฝั่ง
6.เรียนรู้และติดตามสถานการณ์แผ่นดินไหวจากสื่อต่างๆ เพื่อเตรียมความพร้อมรับภัยจากแผ่นดินไหว



การระเบิดของภูเขาไฟ

           เกิดจากหินหนืดที่อยู่ใต้เปลือกโลกถูกแรงดันอัดให้แทรกรอยแตกขึ้นสู่ผิวโลกโดยมีแรงปะทุหรือแรงระเบิดเกิดขึ้น สิ่งที่พุ่งออกมาภูเขาไฟเมื่อภูเขาไฟระเบิดก็คือ หินหนืด ไอน้ำ ฝุ่นละออง เศษหินและแก๊สต่างๆ  โดยจะพุ่งออกมาจากปล่องภูเขาไฟ


หินภูเขาไฟ(หินอัคนีพุ)

-ความพรุนของหินขึ้นอยู่กับอัตราการเย็ยตัวของลาวา
-  ตัวอย่างของหินจากภูเขาไฟ เช่น หินบะซอลต์ หินพัมมิซ หินแก้ว หินทัฟฟ์ หินออบซีเดียน



หินบะซอลต์

- เป็นหินที่เกิดจากการเย็นตัวของลาวาที่ผิวโลกดังนั้นจึงกระทบกับอากาศหรือน้ำส่งผลให้มีการเย็นตัวเร็วลักษณะของหินจะมีเม็ดละเอียดกว่าหินแกรนิต และมีรูพรุนเล็กน้อย
-เป็นต้นกำเนิดอัญมณีที่สำคัญ
- ถ้ามีปริมาณของSiจะเป็นหินแอนดีไซด์




หินพัมมิซ

- เป็นหินที่เกิดจากการเย็นตัวอย่างรวเร็วของลาวาทำให้มีความพรุนมาก บางชิ้นลอยน้ำได้
- นำมาใช้เป็นหินขัดตัว




ภูมิสักษณ์ของภูเขาไฟ 

1.ที่ราบสูงบะซอลต์ เกิดจากลาวาแผ่เป็นบริเวณก้าง ทับถมกันหลายชั้นกลายเป็นที่ราบและเนินเขา


2.ภูเขาไฟรูปโล่ เกิดจากลาวาของหินบะซอลต์ระเบิดออกมาแบบมีท่อปล่องภูเขาไฟเล็กๆ บนยอดจะจมลงไป




3.ภูเขาไฟรูปกรวย เป็นรูปแบบภูเขาไฟที่สวยงามที่สุด เกิดจากการทับถมสลับกันระหว่างการไหลของลาวา กับชิ้นส่วนภูเขาไฟ
   




ภูเขาไฟในประเทศไทย

- ประเทศไทยอยู่นอกเขตการมุดตัวของแผ่นธรณีภาค แต่เคยมีการระเบิดภูเขาไฟมาก่อน บริเวณที่พบหินภูเขาไฟ ได้แก่ จังหวัดลพบุรี กาญจนบุรี สระบุรี ลำปาง สุรินทร์ และศรีสะเกษ ภูเขาไฟที่สำรวจพบส่วนใหญ่มีรูปร่างไม่ชัดเจน ที่มีรูปร่างชัดเจน ได้แก่ ภูเขาไฟดอยผาคอกหินฟู จังหวัดลำปางเป็นต้น















อ้างอิงจาก หนังสือโลก ดาราศาสตร์และอวกาศ สสวท.